Title: Role Playing a Process

Goals: (1) demonstrate understanding	carriers were moving at an even pace
of a process (2) check on student	and evenly distributed; adjustments
understanding of a process (3) have	were made by observers to improve
students work in teams	the overall model of the circuit. Follow-
	up activities expanded to a series
Description: Students play the role(s) of	resistor circuit, and a parallel-resistor
some moving aspect of a process.	circuit. Students gained a better
Different parts of the classroom can be	understanding of how current actually
key stations/stops to represent parts of	moves in a circuit, and the role-play
a process.	was useful in a future problem-solving
	class, where students were able to use
Example: "Simple DC Circuits" After	their experiences in the role play to
discussing simple circuits in lecture,	inform how current and voltage are
completing conceptual questions about	determined for resistor circuits.
current, resistance, and voltage, and	
working with simple circuits in lab, it	Total time: 100 minutes for
was time for students to demonstrate	introduction of activity, role
these concepts. 10-12 students were	descriptions, discussions of circuits and
given the role of charge carriers in a	correcting misconceptions about
simple circuit, and different parts of the	circuits, and follow-up with series and
classroom were designated "battery"	parallel circuits role-playing and
and "resistor" with given voltage and	discussions.
resistance values, respectively. Pennies	
were used to represent voltage: charge	Participant Level: GR, WC
carriers were instructed to pick up an	Prep Time: S
appropriate number of pennies (1 penny	Class Time: M, L
= 1 volt) and deposit an appropriate	When: A
amount at the resistor. The rest of the	
class were observers, checking and	Submitted by:
helping at the battery for penny-pickup,	Prof. Kris Lui
checking that the correct number of	Montgomery College
pennies were deposited at the resistor,	
and that charge	

Code Legend:

Participant Level: WC (Whole Class); GR (Groups); P (Pairs); I (Individual Students) Prep / Class / Results Analysis Time: S (Short); M (Medium); L (Long) When to Use During Semester: B (Beginning); M (Middle); E (End); A (Any time)